有理數的混合運算教案

          時間:2021-06-12 18:02:01 教案 我要投稿

          有理數的混合運算教案

            教學目標

          有理數的混合運算教案

            1.進一步熟練掌握有理數的混合運算,并會用運算律簡化運算;

            2.培養學生的運算能力及綜合運用知識解決問題的能力.

            教學重點和難點

            重點:有理數的運算順序和運算律的運用.

            難點:靈活運用運算律及符號的確定.

            課堂教學過程設計

            一、從學生原有認知結構提出問題

            1.敘述有理數的運算順序.

            2.三分鐘小測試

            計算下列各題(只要求直接寫出答案):

            (1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

            (5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

            (9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);

            二、講授新課

            例1 當a=-3,b=-5,c=4時,求下列代數式的值:

            (1)(a+b)2; (2)a2-b2+c2;

            (3)(-a+b-c)2; (4) a2+2ab+b2.

            解:(1) (a+b)2

            =(-3-5)2 (省略加號,是代數和)

            =(-8)2=64; (注意符號)

            (2) a2-b2+c2

            =(-3)2-(-5)2+42 (讓學生讀一讀)

            =9-25+16 (注意-(-5)2的符號)

            =0;

            (3) (-a+b-c)2

            =[-(-3)+(-5)-4]2 (注意符號)

            =(3-5-4)2=36;

            (4)a2+2ab+b2

            =(-3)2+2(-3)(-5)+(-5)2

            =9+30+25=64.

            分析:此題是有理數的混合運算,有小括號可以先做小括號內的,

            =1。02+6。25-12=-4。73.

            在有理數混合運算中,先算乘方,再算乘除.乘除運算在一起時,統一化成乘法往往可以約分而使運算簡化;遇到帶分數通分時,可以寫

            例4 已知a,b互為相反數,c,d互為倒數,x的絕對值等于2,試求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。

            :由題意,得a+b=0,cd=1,|x|=2,x=2或-2.

            所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

            =x2-x-1.

            當x=2時,原式=x2-x-1=4-2-1=1;

            當x=-2時,原式=x2-x-1=4-(-2)-1=5.

            三、課堂練習

            1.當a=-6,b=-4,c=10時,求下列代數式的值:

            2.判斷下列各式是否成立(其中a是有理數,a≠0):

            (1)a2+1>0; (2)1-a2<0;

            四、作業

            1.根據下列條件分別求a3-b3與(a-b)·(a2+ab+b2)的值:

            2.當a=-5。4,b=6,c=48,d=-1。2時,求下列代數式的值:

            3.計算:

            4.按要求列出算式,并求出結果.

            (2)-64的'絕對值的相反數與-2的平方的差.

            5*.如果|ab-2|+(b-1)2=0,試求

            課堂教學設計說明

            1.課前三分鐘小測試中的題目,運算步驟不太多,著重考查學生運算法則、運算順序和運算符號,三分鐘內正確做完15題可算達標,否則在課后宜補充這一類訓練.

            2.學生完成鞏固練習第1題以后,教師可引導學生發現(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使學生做題目的過程變成獲取新知識的重要途徑.

          【有理數的混合運算教案】相關文章:

          《有理數的混合運算》教案11-25

          有理數的加減混合運算教案09-12

          關于有理數的混合運算教案09-07

          《有理數的混合運算》教案15篇11-25

          《有理數的混合運算》教案(15篇)11-25

          有理數的加減混合運算教案范文09-07

          含乘方的有理數混合運算人教版教案12-06

          有關有理數的加減混合運算教案09-07

          有理數的加減混合運算的教案設計07-04

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  色婷婷综合久久久久中文国产精品 | 亚洲天堂a中文字幕 | 在线观看日韩精品一区二区 | 色综合一区二区在线观看 | 亚洲日本天堂在线 | 日本区一视频.区二视频 |